LPG Amine Treating Unit Retrofitted for Environment Compliance, Lower Operation Costs and Increased Reliability

Maruti Prasad
Technical Services Department
The Bahrain Petroleum Company BSC (c)
Agenda

• Introduction
• Background
• LPG – caustic process before revamp
• LPG Treating Project
• Technical Challenges
• Performance After Start up
• Concluding remarks and lessons learnt
LPG Amine Treating Unit Retrofitted for Environment Compliance, Lower Operating Costs and Improved Reliability

Introduction

Bapco LPG Amine Treating Project

• Olefinic LPG - produced in the Fluid Catalytic Cracking Unit (FCCU)
• LPG is converted to polymer gasoline
• LPG feed must be treated to remove sulphur compounds to meet the product specifications and to prevent catalyst poisoning
• Historically LPG was treated using caustic only
• LPG Treating Project launched to improve the treating process by using a retrofitted column for bulk sulphur removal using diethanolamine (DEA)
• The project has been a great success
LPG - Caustic Process before Revamp

- **H₂S removal by Caustic treating - very old technology, operator intensive**
 - Semi-batch operation - 20°Be caustic solution in stagnant continuous phase and LPG in flowing dispersed phase
 - Caustic strength regularly measured - fresh caustic makeup when strength below 10 wt%
 - Significant spent caustic generation - an issue
 - Frequent dump and recharge of the spent caustic solution posed a safety risk to operators
LPG Treating Project

- Objectives and driving forces
 - Improve process efficiency
 - Improve operability and reliability
 - Substantial reduction in caustic usage and spent caustic waste
 - Enhance environmental performance and compliance
 - Reduce personal safety and health risks (caustic handling)
 - Reduce supply chain risks
 - Increase profitability
 - Minimum capital investment
LPG Amine Treating Unit Retrofitted for Environment Compliance, Lower Operating Costs and Improved Reliability

LPG Treating Project (cont'd)

- LPG From FCCU
- Lean DEA
- LPG-Amine contactor
- Mercaptan Absorber
- Residual H₂S Absorber
- Caustic Regenerator
- Knockout Drum
- Water Wash Column
- Treated LPG
- Spent caustic To WWTP
- Water
- 120 psig, 103°F
- 137 psig, 104°F
- Regenerated Caustic
- Caustic Make up
- Caustic circulation Pump
- Lean DEA booster Pump
- Lean DEA
- Coolant
- Rich DEA to regenerator
- Regenerated Caustic
- Spent caustic To WWTP
- Caustic circulation Pump
- Water Wash Column
- Treated LPG
Technical Challenges

- Existing redundant column dimensionally suitable but had to be retrofitted:
 - Column T/T height - 65 ft, Diameter - 5 ft 6 in - adequate for process requirement
 - New nozzles / manways / random packing / new foundation for column to suit increased weight load
- Lean DEA supply pressure was low
 - New amine booster pumps
- Lean DEA supply temperature is 135°F - at this temperature LPG would vaporise
 - New lean DEA trim coolers
Technical Challenges (cont’d)

• Traditionally LPG-Amine contactors have amine in continuous phase. This requires a downstream coalescer to separate entrained amine.
 – Column is designed for LPG in continuous phase
 – Amine-LPG interface is maintained at bottom of column
 – Minimal entrainment - hence, coalescer not required - cost reduced

• Increased risk of LPG breakthrough into the rich DEA
 – An additional independent level indicator with low level alarms and an emergency shut-off valve provided
Performance After Start Up

• Current operation
 – Unit operating at normal LPG and DEA flow rates
 – H_2S removal efficiency is as expected (>99%)
 – All operating parameters are in normal range
 – Treated LPG meets the required specifications (At amine-LPG contactor outlet, guaranteed H_2S in LPG was <100 vppm, actual achieved is <10 vppm)
 – H_2S absorber caustic dump & recharge no longer a daily routine
 – No spent caustic in the refinery effluent
Concluding Remarks and Lessons Learnt

• Project has been an outstanding success
 – Overall LPG treating more effective and more efficient
 – Small quantity of spent caustic waste used as feed to new waste water treatment plant (MBR)
 – Significant reduction in operator workload and less exposure to caustic
 – Minimised caustic exposure for the operations personnel
 – Improved reliability, less operating problems, fewer tankers on the road, less caustic inventory required at refinery, seamless integration with existing DEA facility
Concluding Remarks and Lessons Learnt (cont’d)

• Key Success Factors
 – Multi-disciplinary teams for project development & implementation
 – Conceptual process designs done in-house
 – In-house technical strength
 – Close working relationship with vendors
Thank You